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Transport phenomena at a critical point: Thermal conduction in the Creutz cellular automaton
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The nature of energy transport around a critical point is studied in the Creutz cellular automaton. The Fourier
heat law is confirmed to hold in this model by a direct measurement of heat flow under a temperature gradient.
The thermal conductivity is carefully investigated near the critical point by the use of the Kubo formula. As a
result, the thermal conductivity is found to take a finite value at the critical point, contrary to some previous
works. Equal-time correlation of the heat flow is also analyzed by a mean-field type approximation to inves-
tigate the temperature dependence of thermal conductivity. A variant of the Creutz cellular automaton called
the Q2R is also investigated and similar results are obtained.@S1063-651X~99!11903-2#

PACS number~s!: 64.60.Ht, 05.60.2k, 44.10.1i, 05.50.1q
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I. INTRODUCTION

Creutz devised a deterministic dynamics for the tw
dimensional Ising model with a momentum term@1#. This
dynamics is a kind of cellular automaton~CA!, where states
are updated in a deterministic way with energy conserva
and we call it the Creutz cellular automaton~CCA!. In the
CCA random numbers are not necessary for its time ev
tion, which provides an advantage in numerical simulatio
Thus, the CCA and its variants have been used to investi
equilibrium properties of magnetic systems@2# instead of the
conventional Monte Carlo method, especially the critic
phenomena at the critical point.

Besides this advantage, the CCA provides a dynam
model for time evolution with energy conservation. Thus t
CCA can be used to study transport phenomena where fl
of physical quantities take important roles. In fact, numeri
results for heat conduction in the CCA were reported in@1#
and the thermal conductivity was found to be proportiona
T22 in high temperature, whereT denotes the temperature
Harris and Grant showed that this temperature dependen
explained by the Kubo formula@3#. They presented an
asymptotic expression for the thermal conductivity in t
high and low temperature limits by evaluating the first te
in the Kubo formula.

Then, it is natural to ask if there is a possible connect
between the thermal conductivity and the phase transit
Because the specific heat diverges at the critical point of
Ising model, the thermal conductivity may also show so
peculiarity at the point. Actually, in some materials, abn
mal behavior of the thermal conductivity has been obser
@4#. Clearly, the CCA is suitable to look into the therm
conductivity near the critical point. In the above mention
paper, Harris and Grant made a comment that the ther
conductivity must vanish at the critical temperatureTC with-
out any evidence. It is the purpose of our paper to cla
PRE 591063-651X/99/59~3!/2783~12!/$15.00
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what really happens to the energy transport at the crit
point in the CCA.

Thus, in this paper we investigate the temperature dep
dence of the thermal conductivity in the thermodynam
limit. We obtain the thermal conductivity by two method
One is a direct measurement of heat flow under a temp
ture gradient. The validity of the Fourier heat law is esta
lished in a wide range of temperature values and the co
cient of thermal conductivity is estimated. The other is t
use of the Kubo formula. Explicit derivation of the formu
is given and the coefficient of thermal conductivity is calc
lated from equilibrium autocorrelations of the energy flo
We check that both the methods yield the same result
find a finite conductivity atTC , which does not agree with
the previous belief.

We also develop a mean-field approximation for t
equal-time correlation of the energy flow, which improv
the estimate by Harris and Grant@3#. Since it is the first term
of the Kubo formula, the result of this treatment not on
explains the temperature dependence at the high and
temperature limits, but also gives a qualitatively good e
mate for the overall temperature dependence.

The conditions under which the Fourier heat law is sa
fied have been studied in the literature@5–9# mainly by using
Hamiltonian systems. The dynamical rules of CA are
simple and local that fast simulations are possible. Thus,
of the present authors applied CA to this problem and fou
some rules that clearly satisfy the Fourier heat law@9#. How-
ever, most of the studies have so far been confined to o
dimensional models, which might cause pathological effe
due to a single path of the flow. Here we study a tw
dimensional system with CCA where we are free from t
above anxiety. We also investigate another model called
Q2R @10#, where Q denotes that the neighborhood of a s
consists of the four nearest-neighbor sites, and 2R means
a spin flips if and only if its neighborhood contains exac
two up spins. Thus, the Q2R is regarded as a variant of
2783 ©1999 The American Physical Society
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CCA without momentum terms. We find that the Four
heat law holds at all temperatures in the CCA. We find t
the Q2R satisfies the Fourier heat law in two dimensio
although energy transport is ballistic in the one-dimensio
counterpart of the Q2R.

This paper is organized as follows. In Sec. II, our mod
and method are explained and an expression for the l
energy flux is derived via the equation of continuity. In Se
III, we demonstrate that the Fourier heat law holds in a w
range of temperatures by a direct simulation. In Sec. IV,
thermal conductivity is calculated by the use of the Ku
formula and its temperature dependence is carefully inve
gated, especially aroundTC . A mean-field analysis is don
for the correlation of the energy flux in Sec. V. Numeric
results for the Q2R are exhibited in Sec. VI. We give
summary and discussion in Sec. VII.

II. MODEL

The CCA is defined as follows. Let us consider the squ
lattice. A couple of variables (s i , j ,s̃ i , j ) are assigned at a sit
( i , j ). Here s i , jP$11,21% denotes a spin ands̃ i , j
P$0,1,2,3% is called a momentum. Then the total Ham
tonian is given by

H52(
i , j

~s i , js i 11,j1s i , js i , j 11!1(
i , j

4s̃ i , j . ~2.1!

The first term represents the ferromagnetic Ising interac
between the nearest-neighbor spins and the second term
resents a kind ofkinetic energy. Note that every quantity i
measured in units where the Ising coupling constant,
Boltzmann constant, and the lattice constant are all un
Thus, energy, temperature, and thermal conductivity are
mensionless quantities in this paper. We divide the lat
into two sublattices, like a checkerboard. Site (i , j ) is called
even or odd according to whether the sumi 1 j is even or
odd. One unit of time evolution consists of two process
each of which simultaneously updates variables on a sub
tice. Namely, when the variables are updated from the st
at time t, first the even sites are updated at timet11/2 and
next the odd sites are updated at timet11. The updating rule
is the following. Spin flip is accepted when the momentum
the site can compensate the energy change of the flip.
is, if the following relation is satisfied, 0<s̃ i , j
2 1

2 s i , j (nnsnn<3, wherenn denotes the nearest-neighb
sites of (i , j ), the spins i , j changes its sign, and the mome
tum is changed to conserve the total energy.

Now we derive expressions for a local energy and
energy flux. From the total Hamiltonian~2.1!, we can define
the local energy on the site (i , j ) at time t as

Ei , j
t 52s i , j~s i 11,j1s i , j 11!14s̃ i , j . ~2.2!

Note that the total energy is equal to the sum of the lo
energies over the lattice. First we consider the case where
site (i , j ) is even. If the spin at site (i , j ) is flipped at time
t11/2, we have

s i , j
t11/252s i , j

t ,
r
t
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s̃ i , j
t11/25s̃ i , j

t 2
1

2
s i , j

t ~s i 21,j
t 1s i 11,j

t 1s i , j 21
t 1s i , j 11

t !,

and the difference between the local energies at timet
11/2 andt is given by

Ei , j
t11/22Ei , j

t 522s i , j
t ~s i 21,j

t 1s i , j 21
t !.

If the spin s i , j is not flipped, the local energy does n
change. Thus the energy change is generally expressed

Ei , j
t11/22Ei , j

t 522s i , j
t ~s i 21,j

t 1s i , j 21
t !d~s i , j

t11/21s i , j
t !

5s i 21,j
t ~s i , j

t11/22s i , j
t !1s i , j 21

t ~s i , j
t11/22s i , j

t !,

~2.3!

whered(x) is Kronecker’s delta,

d~x!5H 1 if x50

0 otherwise,
~2.4!

and we have used the equalityd(x1y)5(12xy)/2 that
holds for x,yP$11,21%. The energy difference betweent
11/2 and t11 is calculated in the same manner, and
obtain

Ei , j
t112Ei , j

t11/252s i , j
t11/2s i 11,j

t11/2d~s i 11,j
t11 1s i 11,j

t11/2!

12s i , j
t11/2s i , j 11

t11/2 d~s i , j 11
t11 1s i , j 11

t11/2!

5s i , j
t11/2~s i 11,j

t11/22s i 11,j
t11 !

1s i , j
t11/2~s i , j 11

t11/22s i , j 11
t11 !. ~2.5!

Combining Eqs.~2.3! and~2.5!, we obtain the following ex-
pression for the energy difference betweent and t11:

Ei , j
t112Ei , j

t 5s i 21,j
t ~s i , j

t112s i , j
t !1s i , j

t11~s i 11,j
t 2s i 11,j

t11 !

1s i , j 21
t ~s i , j

t112s i , j
t !1s i , j

t11~s i , j 11
t 2s i , j 11

t11 !,

~2.6!

where we have used the fact thats i , j
t11/25s i , j

t for odd (i , j )
ands i , j

t11/25s i , j
t11 for even (i , j ). Because the total energy i

conserved, Eq.~2.6! must represent the equation of contin
ity,

Ei , j
t112Ei , j

t 52Ji 11,j ,x
t 1Ji , j ,x

t 2Ji , j 11,y
t 1Ji , j ,y

t , ~2.7!

whereJi , j ,a
t (a5x or y) denotes thea component of the

energy flux at site (i , j ) at time t. Comparing Eqs.~2.6! and
~2.7!, we find that the components of the energy flux a
given as

Ji , j ,x
t 5s i 21,j

t ~s i , j
t112s i , j

t !,

Ji 11,j ,x
t 5s i , j

t11~s i 11,j
t11 2s i 11,j

t !,

Ji , j ,y
t 5s i , j 21

t ~s i , j
t112s i , j

t !,

Ji , j 11,y
t 5s i , j

t11~s i , j 11
t11 2s i , j 11

t !.

The same argument can also be applied to the case wher
( i , j ) is odd. As a result we arrive at the following expre
sions for the energy flux. If site (i , j ) is even,
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FIG. 1. The structure of the
system. The two lines at the edge
are assigned for heat reservoirs.
rg
e

,

o
s

ho
n
m
th
b
d

oir
io
re
t

la

the
on-

y,
the

ri-

cal

ey

ed.

s

he
Ji , j ,x
t 5s i 21,j

t ~s i , j
t112s i , j

t !, ~2.8!

Ji , j ,y
t 5s i , j 21

t ~s i , j
t112s i , j

t !, ~2.9!

and if site (i , j ) is odd,

Ji , j ,x
t 5s i 21,j

t11 ~s i , j
t112s i , j

t !, ~2.10!

Ji , j ,y
t 5s i , j 21

t11 ~s i , j
t112s i , j

t !. ~2.11!

III. THERMAL CONDUCTION UNDER A GRADIENT
OF THE TEMPERATURE

In this section, we report numerical results on ene
transport in the CCA obtained by a direct simulation. W
took the systems of sizeL3L whereL varies from 10 to 300.
The periodic boundary condition was imposed on they di-
rection. At the ends in thex direction, two heat reservoirs
one at temperatureTL and the other atTR , were attached as
shown in Fig. 1. Each heat reservoir consisted of spins
two vertical lines, where the spins on a sublattice were
multaneously updated by the use of the Monte Carlo met
with the heat-bath algorithm. We have numerically co
firmed that if the two heat reservoirs have an identical te
perature the system relaxes to the equilibrium state at
temperature. This relaxation to equilibrium was also o
served in the case where only one reservoir was attache
the system.

Energy transport occurs when the left and right reserv
have different temperatures. It is found that the relaxat
time to a stationary state is very long at low temperatu
below TC52/ln(11A2).2.270, while it is rather short a
high temperatures.

The following two cases are examined with particu
care. One is the case where both the temperaturesTL andTR
are higher thanTC ,TL55.0 andTR55.5. This is called case
A. The other is the case ofTL52.1 andTR52.2, where both
y
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the temperatures are lower thanTC . We call this case B. In
each case, within 107 time steps the system of any size (L
<300) reached a stationary state where a uniform flux in
x direction is realized. After the system reached the stati
ary state, we continued the simulation by 107 more steps for
which we took time averages of physical quantities.

First we consider the distribution of a local kinetic energ
Pi , j (s̃). Because the system is translation invariant in
vertical direction, we computed the average ofPi , j over the
vertical line and found that it is given by a canonical dist
bution

1

L (
j 51

L

Pi , j~ s̃ !}exp~24b i s̃ !, ~3.1!

whereb i is a fitting parameter which is regarded as the lo
inverse temperature at linei. Figures 2~a! and 2~b! show the
distributions for case A and case B, respectively. Th
clearly demonstrate the property~3.1!. Thus local equilib-
rium is realized and the local temperatures are well defin

Let Ti denote the temperature at horizontal positioni,
namely,Ti5b i

21 . We plottedTi as a function ofx5 i /L for
variousL ’s in Figs. 3~a! and 3~b!, which correspond to case
A and B, respectively. Clearly the scaling limit

T~x!5 lim
L→`

T[Lx] , ~3.2!

where @Lx# means the integer part ofLx, exists and is
smooth in both the cases A and B.

Next we observed the total energy flux per row in t
stationary state

Jtot,x

L
5

1

L (
i , j 51

L

Ji , j ,x, ~3.3!
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whereJtot,x is the total energy flux in thex direction and the
bars mean the time average in the stationary state. If
Fourier heat law is realized, this quantity must converge t
nonzero constant in the limitL→` with TL and TR fixed,
because then this quantity is written as

Jtot,x

L
52E

TL

TR
k~T!dT, ~3.4!

with use of the thermal conductivityk(T). We utilized this
property to judge whether the Fourier heat law is satisfied
not.

In Fig. 4, theL dependence ofJtot,x /L is shown for vari-
ous temperature values. The figure shows that the size
pendence disappears in the large systems. Thus we con
that the Fourier heat law is realized in a wide range of te
peratures including the critical point.

Moreover, Jtot,x /L has a finite value and change
smoothly around the critical temperature. This observat
suggests that the thermal conductivity has no strong sin
larity at TC . However, we can treat not the thermal condu
tivity itself but the integration of it in the present method a
a possible singularity, if any, is hardly observed. Thus in
next section we investigate the thermal conductivity in
bulk at a given temperature with use of the Kubo formula

FIG. 2. ~a! Distribution of local kinetic energies in case A. Th
probability that kinetic energy at a site with horizontal positioni
takes a value is plotted against the value. Calculations were don
a system of size 1003100.~b! Distribution of kinetic energy in case
B obtained in the same manner as~a!.
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IV. THERMAL CONDUCTIVITY COMPUTED
VIA THE KUBO FORMULA

According to the Kubo formula, the thermal conductivi
is equal to the summation of the equilibrium autocorrelat
functions of the energy flux as

k~T!5
1

NT2 (
t50

`

^Jtot,x
0 Jtot,x

t &S 12
1

2
d t,0D , ~4.1!

in

FIG. 3. ~a! Scaled temperature profiles in case A with vario
system sizes: 30330, 2003200, and 3003300.~b! Scaled tempera-
ture profiles for case B.

FIG. 4. Jtot,x/L measured in the system of sizeL3L for various
boundary temperatures. The numbersa-b in the figure mean that
TL5a andTR5b.
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whereJtot,x
t 5( i , j Ji , j ,x

t is the total energy flux in thex direc-
tion at timet, ^ & means the equilibrium ensemble average
temperatureT, andN is the total number of sites. This for
mula is proved for the CCA in Appendixes A and B.

We numerically computed the autocorrelation functio
^Jtot,x

0 Jtot,x
t & for t<150 in the CCA under the periodic bound

ary conditions in thex and y directions. Initial conditions
were randomly generated by a Monte Carlo method w
temperatureT. We denote the partial Kubo sum up to timet
by k t, namely,

k t5
1

NT2 (
t850

t

^Jtot,x
0 Jtot,x

t8 &S 12
1

2
d t8,0D . ~4.2!

Figure 5 shows numerically computedk t in the system of
size 2003200 at various temperatures. It is observed that
summation converges byt530 for every temperature. A
temperatures aboveTC , the sum monotonically increase
and tends to a constant exponentially fast. At low tempe
tures the monotonicity is lost and significant fluctuations
pear. However,k t still reaches a convergence byt510.

Figure 6 shows the thermal conductivity thus obtain
and that computed via the direct measurement of energy
as explained in the preceding section. Both the results a

FIG. 5. The partial Kubo sumk t at various temperatures.

FIG. 6. Themal conductivityk(T) measured in the direct simu
lation and that calculated via the Kubo formula in the system of s
2003200.
t
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-
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d
x
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with each other very well. From the figure we know that t
thermal conductivity has a peak atT;2.70, which is slightly
above the critical temperatureTC . Above the peak value, the
thermal conductivity gradually decreases and tends to zer
the high temperature limit. Below the peak value, the co
ductivity shows a remarkable change aroundTC and reaches
nearly zero atT52.0. Detailed measurements were do
near the critical temperatureTC and the results are shown i
Fig. 7. This figure shows thatk(T) appears continuous an
smooth at the critical point, though the magnitude of t
change is large. Because little size dependence is seen w
L>100, we can conclude that at least no divergence or
vanishing ofk(T) occurs atTC . Of course we cannot den
the possibility of singularity or discontinuity in a higher de
rivative.

V. MEAN-FIELD ANALYSIS OF
THERMAL CONDUCTIVITY

In this section, we estimate the equal-time correlat
function of the heat flow using a mean-field approximati
and discuss its temperature dependence. This quantity is
first term of the Kubo formula Eq.~4.1!, namely,k0(T), and
thus we can obtain some information on the temperature
pendence of the thermal conductivity.

As derived in Appendix B,k0(T) is expressed in terms o
an average of the total flowJtot,x in the local equilibrium as

k0~T!5
1

2T2N
^Jtot,xJtot,x&5 lim

uTL2TRu→0

^Jtot,x& le

N~TL2TR!
,

~5.1!

where^ & le denotes the average with respect to the local eq
librium product measure~A6! with the right reservoir tem-
peratureTR and the left reservoir temperatureTL .

First we consider the quantitŷJi , j ,x& le at an even site
( i , j ). Denoting the local equilibrium measure byr le , we
have

^Ji , j ,x& le5 (
$s,s̃%

Ji , j ,xr le . ~5.2!

Substituting Eq.~2.8! into Ji , j ,x , we can express this as
e

FIG. 7. Thermal conductivity near the critical temperature in t
systems with different sizes.
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^Ji , j ,x& le5 (
$s,s̃%

~s i 21,js i , j8 2s i 21,js i , j !r le

522 ( *

$s,s̃%

s i 21,j s i , j r le , ~5.3!

wheres i , j8 denotes the updated spin value at the even
( i , j ) and (* means the summation over the configuratio
in which the spins i , j can flip. Whether the spin flip occur
or not depends on the spin and the momentum variabl
( i , j ) and the sum of the spin values on the nearest-neigh
sites,

h5s i 21,j1s i 11,j1s i , j 211s i , j 11 . ~5.4!

Specifically, the spin flip is possible in the following con
figurations:

~h,s i , j ,s̃ i , j !55
„64,61,~3,2!…

„62,61,~3,2,1!…

„60,61,~3,2,1,0!…

„64,71,~1,0!…

„62,71,~2,1,0!….

~5.5!

Because the summation~5.3! must be taken over the con
figurations for the whole system, it is difficult to carry it ou
exactly. Thus we consider the following mean-field appro
mation. In this approximation the spin variables at the n
nearest-neighbor sites are replaced by their average va
Those average values should depend only on the horizo
position and not on the vertical position, since the local eq
librium measure is translation invariant in they direction.
Thus the average concerning the local equilibrium meas
is replaced by the average concerning the following meas

P~s,s̃,^s&!

(
s,s̃

P~s,s̃,^s&!

, ~5.6!
te
s

at
or

-
t
es.
tal
i-

re
e:

where

P~s,s̃,^s&!5exp~24b i s̃ i , j !exp@as i 21,j1bs i , j 21

1cs i , j 111ds i 11,j1s i , j~b i 218 s i 21,j

1b is i , j 111b is i , j 211b is i 11,j !#, ~5.7!

with

a5b i 22^s& i 221b i 21^s& i 211b i 21^s& i 21 ,

b5b i 21^s& i 211b i^s& i1b i^s& i 11 ,

c5b i 21^s& i 211b i^s& i1b i^s& i 11 ,

d5b i 11^s& i 111b i 11^s& i 111b i 11^s& i 12 .

The summation in the denominator of Eq.~5.6! is taken over
possible values ofs i , j ,s̃ i , j , and the nearest-neighbor spin
Here b i is the inverse temperature at horizontal positioni
andb i 218 takes the same value asb i 21 . We introducedb i 218
for later convenience.̂s& i denotes the local equilibrium
value of the spin variable at horizontal positioni.

Under the above approximation,^Ji , j ,x& le is represented as

^Ji , j ,x& le.2
2

Z

]Z*

]b i 218
, ~5.8!

whereZ andZ* are defined by

Z* 5( *

s,s̃

P~s,s̃,^s&!,

Z5(
s,s̃

P~s,s̃,^s&!.

With straightforward calculationZ* is obtained as
Z* 52eb i 218 2b i ~e24b i1e28b i !cosh~a1b1c1d!12~e210b i1e26b i1e22b i !$eb i2b i 218 cosh~a2b2c2d!

1eb i 218 2b i cosh~a2b1c1d!1eb i 218 2b i cosh~a1b2c1d!1eb i 218 2b i cosh~a1b1c2d!%

12~e212b i1e28b i1e24b i11!$eb i 218 2b i cosh~a1b2c2d!1eb i 218 2b i cosh~a2b2c1d!

1eb i 218 2b i cosh~a2b1c2d!1e2b i82b i cosh~2a2b1c1d!1e2b i82b i cosh~2a1b2c1d!

1e2b i82b i cosh~2a1b1c2d!%12e2b i 218 1b i~e24b i1e28b i !cosh~a1b1c1d!12~e210b i1e26b i1e22b i !

3$eb i 218 2b i cosh~2a1b1c1d!1e2b i 218 1b i cosh~a2b1c1d!1e2b i 218 1b i cosh~a1b2c1d!

1e2b i 218 1b i cosh~a1b1c2d!%. ~5.9!

In the first order ofDT(ªTi2Ti 21), (]Z* /]b i 218 )ub
i 218 5b i1b

i
2DT can be simplified as
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]Z*

]b i 218
U

b
i 218 5b i1b

i
2DT

.
4DT

T2
$~e24b i1e28b i !cosh~12b i^s& i !14~e210b i1e26b i1e22b i ! cosh~6b i^s& i !

13~11e28b i !~11e24b i !%. ~5.10!

Z is also calculated as

Z524@cosh4~3b i^s& i1b i !1 cosh4~3b i^s& i2b i !#~11e24b i !~11e28b i !. ~5.11!

Thus we arrive at the approximate formula fork0(T),

k0~T!5 lim
DT→0

^Jtot,x /N& le

DT
.

cosh~12b^s&!cosh~2b^s&!12~112 cosh 4b!cosh~6b^s&!16 cosh 2b cosh 4b

4T2@cosh4~3b^s&1b!1cosh4~3b^s&2b!#cosh 2b cosh 4b
, ~5.12!
ar

se
is

a

e-
e
re
er
a

ur

sp

la-
at
.
rgy
er-

ed
sti-
e
st-

l, it
an

n-
al-
ere
m-
where in the limit ofDT→0 the system becomes uniform
and we identify ^Jtot,x /N& le with ^Ji , j ,x& le and set ^s&
ª^s& i . In the high temperature limit, usinĝs&50, we
have

k0~T!;
13

8

1

T2
, ~5.13!

while in the low temperature limit, usinĝs&51,

k0~T!;
4

T2
e28/T. ~5.14!

These asymptotic forms are the same as obtained by H
and Grant@3#.

However, the formula~5.12! gives more information
about overall temperature dependence. Although the pre
approximation is not good near the critical point, within th
approximation we find thatk0(T) is continuous but shows
cusp at the mean-field critical temperatureTM.3.5 because
^s&}(TM2T)1/2. In Fig. 8 we compare the mean-field r
sults with the numerical ones obtained in the preceding s
tion. In the high temperature region both the results ag
with each other, while discrepancies appear at low temp
tures. This is partly due to the difference between the me
field critical temperature and the true critical temperat

FIG. 8. Numerically computedk0(T) and the mean-field results.
ris

nt

c-
e
a-
n-
e

TC.2.27. In addition the simulation results have no cu
and actually change smoothly.

In Fig. 9 we showk(T) and 3.53k0(T), both of which
are numerically obtained from the equilibrium autocorre
tion functions of the energy flux. This figure shows th
k0(T) is nearly proportional tok(T) in high temperatures
This implies that the autocorrelation functions of the ene
flux are similar in this temperature region, which is also p
ceived by comparing the two curves forT53.0 andT53.5
in Fig. 5.

VI. HEAT CONDUCTION IN THE Q2R

As a simplified variant of the CCA, the Q2R was devis
and some equilibrium and dynamical features were inve
gated @10–12#. There are no momentum variables in th
Q2R, where a spin flips only when the sum of the neare
neighbor spins is zero. Despite the simplicity of the mode
is known that the critical behavior for the magnetization c
be simulated by this model.

We have performed direct simulations of the Q2R in co
tact with two heat reservoirs at different temperatures in
most the same manner as in Sec. III. Heat reservoirs w
realized by the same algorithm as shown in Fig. 1. The te
peratures of the reservoirs were set asTL56.0 and TR

FIG. 9. Thermal conductivity and 3.53k0(T). Both are numeri-
cally obtained.
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510.0. Here we took quasi-one-dimensional systems of
L310 with variousL ’s. Simulation time for each size is 5
3107 time steps. The expressions for the energy flux~2.8!
and~2.10! can be used without changes because they do
contain momentum variables. For the same reason, in
Q2R we cannot determine local temperature from the dis
bution of local kinetic energy as was done in the CCA. Th
we plotted local energies in the stationary state for vari
system sizes in Fig. 10. As in the Creutz model, the Q2R a
shows a smooth energy profile in the scaling limit~3.2!.
System-size dependence of the total energy flux is show
Fig. 11. The total energy flux converges to a nonzero fin
value in the limitL→` and it demonstrates that the Q2R h
a normal thermal conductivity at least when the temperatu
are sufficiently high. This means that the normal therm
conductivity in the CCA is not caused by the presence of
momentum terms.

The thermal conductivity was carefully calculated wi
use of the Kubo formula in a system of size 1003100 at
temperatures aroundTC . The result is shown in Fig. 12
which exhibits similar behavior to the CCA. The therm
conductivity shows a remarkable change nearTC but seems
continuous and smooth. This result disagrees with Costa
Herrmann@11#; they reported that energy flux vanished at t
critical point and no transport occurred below the critic

FIG. 10. Profile of the local energies in the Q2R of vario
sizes.

FIG. 11. System-size dependence of the total energy flux in
Q2R.
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s
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point. This discrepancy may be attributed to the differen
in system sizes and heat reservoirs in their and our syste
In @11#, the distance between the reservoirs is 20, which m
be too small to obtain bulk thermal conductivity. Their he
reservoir is deterministic and keeps energy a constant in
boundary layer representing the reservoir. Thus the mo
of the total system must eventually become periodic. B
cause energy flow rarely occurs in low temperature, s
simple dynamics may not be able to generate it, whereas
reservoirs are stochastic and rare events can happen. An
possible interpretation is that they misunderstand the g
change of thermal conductivity around the critical point
vanishing.

In addition, Costa and Herrmann reported two differe
types of transport processes. One is normal diffusion and
other is a systematic transport called ‘‘highway.’’ The latt
causes a ballistic transport. However, we did not find su
ballistic transport in our simulations. This is also attribut
to the differences in heat reservoirs and system sizes.
highway is characteristic of their deterministic reservoirs a
moreover the fraction of highways decreases to zero as
system size increases.

At the end of this section, we mention the on
dimensional Q2R dynamics. Ifi is even, the spin value o
site i at time t11 is expressed in terms of spin variables
time t as

s i
t115s i

t11/25s i
t22s i

t d~s i 21
t 1s i 11

t !5s i 21
t s i

ts i 11
t .

~6.1!

In the same manner, ifi is odd

s i
t115s i

t11/222s i
t11/2d~s i 21

t11/21s i 11
t11/2!

5s i 22
t s i 21

t s i
ts i 11

t s i 12
t . ~6.2!

Defining local energy of sitei at time t as

Ei
t52s i

ts i 11
t , ~6.3!

we obtain the following relation for the local energy usin
Eqs.~6.1! and ~6.2!. Namely, if i is even,

Ei
t115Ei 12

t , ~6.4!
e

FIG. 12. Thermal conductivity near the critical point in the Q2
computed via the Kubo formula in the system of size 1003100.
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and if i is odd,

Ei
t115Ei 22

t . ~6.5!

Therefore, the energy transport in one-dimensional Q2R
ballistic and the Fourier heat law is not satisfied. Thus
have found that the dimensionality has an important role
the Fourier heat law in the Q2R.

VII. SUMMARY AND DISCUSSION

In this paper we have studied the thermal conduction
the CCA with two methods. One is the direct measurem
of the heat flux under a temperature gradient. The other is
use of the Kubo formula. The former revealed that the
sumption of local equilibrium is satisfied and that Four
heat law is realized in a wide range of temperatures. T
thermal conductivity was carefully calculated near the cr
cal point by the latter method and the results show no sin
larity for k(T) at TC .

How a thermal conductivity behaves atTC is a highly
nontrivial problem. Harris and Grant@3# and Costa and
Herrmann @11# both argued that the thermal conductivi
vanishes at the critical point. On the other hand, the auto
relation of the total energy flux might show a slow decay d
to the critical slowing down. Then the thermal conductiv
might be divergent atTC . Our present result shows neither
the case.

The present result does not mean that there is no sin
larity in energy transport atTC . The Fourier heat law mean
that the macroscopic motion of energy density obeys
diffusion equation with diffusion constant D(T)
5k(T)/C(T), whereC(T) is the specific heat. The prese
result shows thatk(TC) is finite while C(T) diverges to
infinity at TC . Thus the diffusion constantD(T) vanishes at
TC .

We evaluated the equal-time correlation of the heat fl
by the use of mean-field approximation. This quantity is
first term in the Kubo formula and we can obtain a rou
estimate fork(T). In the high and low temperature limits
our approximation reproduces the result by Harris and G
@3#.

Similar calculations were also done for the Q2R, a si
plified variant of the CCA. The results obtained are alm
the same as in the CCA. The normal thermal conductiv
was found and it was continuous and smooth at the crit
point. This proves that the existence of the momentum te
is not relevant to the normal thermal conductivity. On t
other hand, the dimensionality is important. Energy transp
is ballistic in the one-dimensional Q2R. Such importance
the dimensionality was reported also in@13#.

The similarity of the thermal conductivities in the CC
and the Q2R also implies that the smooth change ofk at the
critical point is rather generic. To investigate to what exte
this behavior is generic, however, we must examine ot
dynamical systems with a critical point. It is a problem to
addressed in future.
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APPENDIX A

In this and the next Appendix, we derive the Kubo fo
mula~4.1! for the CCA. We denote a state of the total syste
by v5(v i , j ), wherev i , j5(s i , j ,s̃ i , j ), and the transforma-
tion from the state at timet, v t, to that at time t
11, v t11, by V as

v t115V~v t!. ~A1!

Then, the time evolution of any functionF(v) is represented
by

Ft11~v!5Ft
„V~v!… ~A2!

and F0(v)5F(v), and the time evolution of a measur
r(v) by

r t11~v!5(
v8

d„v,V~v8!…r t~v8! ~A3!

andr0(v)5r(v), where

d~v,v8!5H 1 if v5v8

0 if vÞv8.
~A4!

Now we define the total fluxJtot,x(v) by

Jtot,x~v!5(
i , j

Ji , j ,x~v!, ~A5!

whereJi , j ,a(v) (a5x or y) is thea component of the en-
ergy flux at site (i , j ) when the system is in statev. We
assume that the initial measurer0 equals the local equilib-
rium measurer le defined by

r le~v!5
1

Zle
)
i , j

e2b iEi , j ~v!, ~A6!

whereEi , j (v) is the local energy around site (i , j ) in state
v. Zle denotes the normalization constant

Zle5(
v

)
i , j

e2b iEi , j ~v!. ~A7!

The parameterb i is the local inverse temperature at thei th
column. We consider the temperature variation in thex di-
rection only. If the temperature is uniform and all theb i ’s
equal a valueb, r le becomes the equilibrium measure
temperatureT5b21. The average of functionF(v) with
respect to the local equilibrium measure is written as

^F& le5(
v

F~v!r le~v!. ~A8!

Similarly we write the equilibrium average as^F& eq.
In the following, we calculate the local equilibrium ave

age of the total flux at timet.
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^Jtot,x
t & le5^Jtot,x

0 & le1 (
t850

t21

^Jtot,x
t8112Jtot,x

t8 & le ~A9!

5^Jtot,x& le1 (
t850

t21

(
v

@Jtot,x
t811~v!2Jtot,x

t8 ~v!#r0~v!

~A10!

5^Jtot,x& le1 (
t850

t21

(
v

Jtot,x
t8 ~v!@r1~v!2r0~v!#.

~A11!

In the last equality, we have used the identity

(
v

Ft11~v!r0~v!5(
v

(
v8

Ft11~v!d~v8,V~v!!r0~v!

5(
v8

Ft~v8!r1~v8!. ~A12!

Utilizing the equation of continuity

El ,m„V~v!…5El ,m~v!2Jl 11,m,x~v!1Jl ,m,x~v!

2Jl ,m11,y~v!1Jl ,m,y~v!, ~A13!

r1(v) is calculated as

r1~v!5
1

Zle
(
v8

d„v,V~v8!…)
l ,m

e2b lEl ,m~v8!

5
1

Zle
(
v8

d„v,V~v8!…)
l ,m

exp$2b l@El ,m„V~v8!…

1Jl 11,m,x~v8!2Jl ,m,x~v8!1Jl ,m11,y~v8!

2Jl ,m,y~v8!#%

5r le~v!(
v8

d„v,V~v8!…

3)
l ,m

e2b l [Jl 11,m,x~v8!2Jl ,m,x~v8!]

5r le~v!(
v8

d„v,V~v8!…)
l ,m

e~b l2b l 21!Jl ,m,x~v8!.

~A14!

Inserting the above formula into Eq.~A11!, we have

^Jtot,x
t & le5^Jtot,x& le1 (

t850

t21

(
v

Jtot,x
t8 ~v!r le~v!

3H(
v8

d„v,V~v8!…)
l ,m

e~b l2b l 21!Jl ,m,x~v8!21J .

~A15!

Now we formally expand the right hand side with respect
“T and obtain inO(“T)
^Jtot,x
t & le.^Jtot,x& le1 (

t850

t21

(
v

(
v8

Jtot,x
t8 ~v!req~v!

3d„v,V~v8!…(
l ,m

~b l2b l 21!Jl ,m,x~v8!

.^Jtot,x& le1 (
t850

t21

(
v8

Jtot,x
t811~v8!req~v8!

3(
l ,m

~b l2b l 21!Jl ,m,x~v8!

.^Jtot,x& le2
“T

T2 (
t851

t

^Jtot,xJtot,x
t8 &eq, ~A16!

where we have used the time invariance of the equilibri
measure,req„V(v)…5req(v).

As we will show in Appendix B, the following equality
holds for the first term in the right hand side:

^Jtot,x& le.2
“T

2T2
^~Jtot,x!

2&eq ~A17!

in O(“T). In addition, we assume that the average ene
flux goes to a stationary value in the limitt→` irrespective
of an initial measure. Then the stationary energy flux per
obeys the Fourier heat law

Jst[ lim
t→`

1

N
^Jtot,x

t & le52k“T in O~“T! ~A18!

and the thermal conductivityk is given by

k~T!5(
t50

`
1

T2N
^Jtot,xJtot,x

t &S 12
1

2
d t,0D , ~A19!

which is the Kubo formula for the CCA. We remark that th
expansion is formal and not justified. The coefficientk might
be divergent. Currently we have no means to judge the c
vergence of the coefficient except the numerical method

APPENDIX B

In this Appendix we prove the formula~A17!. First we
note that

]

]“b
^Jtot,x& leu

“b505(
i , j

(
l ,m

l ~^Ji , j ,x&eq̂ El ,m&eq

2^Ji , j ,xEl ,m&eq!. ~B1!

This is obtained by a straightforward calculation. From no
on, we only deal with equilibrium averages and the suf
‘‘eq’’ will be omitted.

Since the total HamiltonianH is invariant, namely,
H„V(v)…5H(v), we have
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^Ji , j ,xEl ,m&5Z21(
v

Ji , j ,x~v!El ,m~v!e2bH~v!

5Z21(
v

Ji , j ,x~v!El ,m~v!e2bH„V~v!…

5Z21(
v

Ji , j ,x„V
21~v!…El ,m„V

21~v!…e2bH~v!,

~B2!

whereV21 is the inverse operator ofV. Denoting the op-
eration of updating the even sites byVe and that for the odd
sites byVo, we can decompose the time evolution opera
V as

V5Vo+Ve. ~B3!

Since we haveVe+Ve5Vo+Vo51 ~identity!, the inverse op-
erator is given as

V215Ve+Vo. ~B4!

Let us define the shift operatorS by

~Sv! i , j5v i , j 21 . ~B5!

This means that the operatorS shifts the state by one site i
the y direction. Because the shift exchanges the roles of
even and odd sites, we have

S+Ve5Vo+S, ~B6!

S+Vo5Ve+S. ~B7!

Thus the inverse operator has another representation

V215S21+V+S. ~B8!

Inserting this formula into Eq.~B2! and utilizing the shift
invariance of the Hamiltonian@i.e., H„S(v)…5H(v)], we
can write
r

e

^Ji , j ,xEl ,m&5Z21(
v

Ji , j ,x„V
21~v!…

3El ,m„S
21+V+S~v!…e2bH~v! ~B9!

5Z21(
v

Ji , j ,x„V
21+S21~v!…

3El ,m„S
21+V~v!…e2bH~v! ~B10!

5Z21(
v

Ji , j ,x„V
21+S21~v!…

3El ,m11„V~v!…e2bH~v!. ~B11!

From the definition of the fluxJi , j ,x(v),

Ji , j ,x~v!5H s i 21,j~s i , j8 2s i , j ! if ~ i , j ! is even

s i 21,j8 ~s i , j8 2s i , j ! if ~ i , j ! is odd,
~B12!

where v85V(v), v5$v i , j5(s i , j ,s̃ i , j )%, and v85$v i , j

5(s i , j8 ,s̃ i , j8 )%, and the identityV21+S21(v)5S21+V(v),
we obtain

Ji , j ,x„V
21+S21~v!…52Ji , j 11,x~v! ~B13!

in both the cases that site (i , j ) is even or odd. Combining
Eqs.~B11! and ~B13!, we have

^Ji , j ,xEl ,m&52^Ji , j 11,xEl ,m11
1 &. ~B14!

Similarly we have ^Ji , j ,x&52^Ji , j 11,x&. Inserting these
equalities into Eq.~B1!, we arrive at

]

]“b
^Jtot,x& leu

“b50

52(
i , j

(
l ,m

l ^Ji , j ,xEl ,m&

5(
i , j

(
l ,m

l ^Ji , j ,xEl ,m
1 &5

1

2(i , j (
l ,m

l ^Ji , j ,x~El ,m
1 2El ,m!&

5
1

2(i , j (
l ,m

l ^Ji , j ,x~Jl ,m,x2Jl 11,m,x1Jl ,m,y2Jl ,m11,y!&

5
1

2(i , j (
l ,m

l ^Ji , j ,x~Jl ,m,x2Jl 11,m,x!&

5
1

2(i , j (
l ,m

^Ji , j ,xJl ,m,x&5
1

2
^~Jtot,x!

2&. ~B15!

This is equivalent to the formula~A17!.
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